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Periodic, quasiperiodic, and chaotic localized solutions of a driven, damped nonlinear lattice

Dirk Hennig
Fachbereich Physik, Institut fu¨r Theoretische Physik Arnimallee 14, Freie Universita¨t Berlin, 14195 Berlin, Germany

~Received 21 August 1998!

We study the solution behavior of a damped and parametrically driven nonlinear chain modeled by a discrete
nonlinear Schro¨dinger equation. Special attention is paid to the impact of the damping and driving terms on the
existence and stability of localized solutions. Dependent upon the strength of the driving force, we find rich
lattice dynamics such as stationary solitonlike solutions and periodic and quasiperiodic breathers, respectively.
The latter are characterized by regular motion on tori in phase space. For a critical driving amplitude the torus
is destroyed in the course of time, leaving temporarily a chaotic breather on the lattice. We call this order-chaos
transition a dynamical quasiperiodic route to chaos. Eventually the chaotic breather collapses to a stable
localized multisite state. Finally, it is demonstrated that above a certain amplitude of the parametric driving
force no localized states exist.@S1063-651X~99!04202-6#

PACS number~s!: 05.45.Xt, 41.20.Jb, 63.20.Pw, 63.20.Ry
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I. THE DAMPED, DRIVEN, NONLINEAR, DISCRETE
SCHRÖDINGER EQUATION

The influence of dissipation on the excitation of coher
structures, especially solitons, in various physical model s
tems was studied in a series of papers over the past
decades@1–5#. Because of its important role in describin
soliton dynamics in nonlinear media@6#, special attention
was paid to the nonlinear Schro¨dinger~NLS! equation modi-
fied by the inclusion of damping and driving terms@7,2#.
Barashenkovet al. @2,8# studied the parametrically driven
damped NLS equation iC t1]2C/]x212uCu2C
5hC* exp(iVt)2idC, whereC(x,t) is a complex field am-
plitude. They found that stable localized solutions in t
form of solitons are excitable only if the strength of the dr
ing field h exceeds the damping constantd, that is,h.d. In
particular, in the absence of the driving field the damp
NLS equation does not support soliton solutions for anyd
.0.

However, the application of the continuum NLS equati
is justified only if the spatial extension of the nonline
waves is much larger than typical inherent length scales
the system~e.g., the distance between adjacent fibers in
rays of coupled optical waveguides!. Otherwise, the discrete
structure of the system has to be taken into account and
must consider the discretized system rather than the
tinuum equation. Furthermore, whenever a numerical st
of the nonlinear wave equation is demanded the issue o
discretization has to be addressed. One possible discre
tion of the parametrically driven, damped NLS equation
given by

i
]Cn~ t !

]t
12uCn~ t !u2Cn~ t !

1V@Cn11~ t !1Cn21~ t !22Cn~ t !#

5hCn* ~ t !exp~ iVt !2 idCn~ t !. ~1!

The real parametersd>0 andh>0 determine the strength o
the damping and driving force, respectively. We introduc
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the real parameterV regulating the strength of the couplin
between the lattice oscillators. In the conservative, undri
limit of d50 and h50 Eq. ~1! reduces to the standar
DNLS system, which finds application in numerous physi
fields @9#. However, the standard DNLS equation is nonin
grable @10,11# and therefore does not exhibit exact solito
solutions. Nevertheless, as shown in@12#, the excitation of
stable localized states provided by stationary solitonlike
lutions is possible. Furthermore, the standard DNLS equa
represents a Hamiltonian lattice for which the existence
breather solutions, that is, spatially localized and tim
oscillating solutions, is well established@13,14#. MacKay
and Aubry have proved that for time-reversible Hamiltoni
networks of weakly coupled oscillators the trivial localize
solutions of the no-coupling limit are continued for sma
coupling strengths as time-periodic and exponentially loc
ized states provided certain anharmonicity and nonresona
conditions are fulfilled@13#. Using the continuation method
without time-reversal symmetry, Sepulchere and MacK
have extended the result to more general oscillator netwo
including also dissipative systems@15#. The concept of the
continuation of localized solutions starting from the antico
pling limit has been exploited by Johansson and Aubry
construct quasiperiodic breathers of the standard DN
equation oscillating with two incommensurate frequenc
@16#. In Ref. @17# the quasiperiodic breathers of th
Ablowitz-Ladik discretization@18,19# of the NLS equation
have been derived with the help of the inverse scatter
transformation. Konotopet al. @20# and Cai et al. @21#
proved integrability of the dynamics of the Ablowitz-Ladi
system in a time-varying, spatially uniform electric fie
along the chain direction, which is of the formVn5E(t)n.
However, less work has been done with respect to the mu
impact of dissipation and driving forces on breather solutio
@22#.

The scope of the present study is to demonstrate that
driven, damped DNLS lattice exhibits rich dynamical loca
ization effects. Various types of localized lattice states ar
namely, periodic and quasiperiodic breathers, respectiv
and a form of localized spatiotemporal chaos, which we c
a chaotic breather. The formation of the chaotic breather
1637 ©1999 The American Physical Society
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1638 PRE 59DIRK HENNIG
sults from a dynamical bifurcation for which quasiperiod
motion persists as a regular transient evolution at the en
which it becomes destabilized and the associated toru
destroyed. The chaotic breather sustains temporarily on
lattice and collapses finally to a stable localized multis
pattern.

In Sec. II we investigate the stationary system with e
phasis on the existence of localized solitonlike states.
stationary system can be formulated in terms of a fo
dimensional volume-preserving map. We identify parame
constellations for which the origin represents a hyperbo
equilibrium. The attributed homoclinic orbit is exploited
construct a solitonlike state on the damped, driven latt
Linear stability of the stationary localized solution is di
cussed with the help of Floquet analysis. Section III de
with the dynamical features of the damped, driven DN
lattice. First, we discuss the case of vanishing lattice c
plings V50 for which a set of uncoupled driven, dampe
oscillators is obtained. The dynamics of a single oscillato
then investigated. In particular we search for parameter
ues for which, in addition to the stable zero point, a seco
~nonzero! attractor exists on the Poincare´ map of the oscilla-
tor providing a periodic solution. In order to construct a l
calized lattice state only one oscillator is excited initially
the periodic regime and the remaining ones are held at
zero fixed point~the single oscillator lattice excitation!. This
yields a trivial localized lattice solution, that is, a one-s
breather. When the oscillators become coupled (V.0) this
simple localized state experiences a continuation as a s
breather up to some driver amplitudes. Interestingly, wh
the amplitude of the driving force is further enlarged t
static breathers changes into quasiperiodic breathers a
result of a Hopf bifurcation, which is well illustrated on
two-dimensional return map assigned to a local oscillator.
a critical coupling strength we observe that the quasiperio
breather becomes dynamically unstable, developing s
tiotemporal chaos, which, remarkably, stays localized a
few lattice sites. Eventually, after the chaotic interlude
over a stable localized multisite state is reached. Finally,
demonstrate that above a certain amplitude of the driving
breather becomes dynamically unstable and is extinguis
by collapsing to vanishing lattice amplitudes.

II. STATIONARY LOCALIZED SOLUTIONS

We study stationary solutions of the system~1! that are
obtained from the ansatz

Cn~ t !5fneivt5~xn1 iyn!eivt, ~2!

with fnPC ~realxn ,yn) and a rotation frequencyv. Substi-
tuting Eq.~2! into Eq. ~1!, we obtain

vfn22ufnu2fn2V~fn111fn2122fn!

5 idfn2hfn* exp@ i ~V22v!t#, ~3!

from which we infer that stationary solutions are possi
when the driving and rotation frequencies fulfill the cond
tion

V22v52kp, k50,61,62, . . . . ~4!
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Decomposing into real and imaginary part, we obtain

vxn22~xn
21yn

2!xn2V~xn111xn2122xn!52dyn2hxn
~5!

vyn22~xn
21yn

2!yn2V~yn111yn2122yn!5dxn1hyn .
~6!

Settingun5xn21 andvn5yn21 , we express this difference
system as a four-dimensional mapR4→R4 determined by

M:5
xn115

1

V
@ṽxn22~xn

21yn
2!xn1hxn1dyn#2un ,

yn115
1

V
@ṽyn22~xn

21yn
2!yn2hyn2dxn#2vn ,

un115xn ,

vn115yn ,
~7!

whereṽ5v12V and we drop the tilde afterward. The ma
M is volume preserving because the Jacobian matrixDM,
which is given by

DM5S Dx D2 21 0

D1 Dy 0 21

1 0 0 0

0 1 0 0

D , ~8!

with

Dx5
1

V
@v26xn

222yn
21h#, ~9!

Dy5
1

V
@v26yn

222xn
22h#, ~10!

D652
1

V
@4xnyn6d#, ~11!

fulfills the condition detDM51.
Being interested in the excitation of localized states on

damped, driven lattice, we recall that such localized stati
ary solutions correspond to map orbits lying on the sta
and unstable manifolds of hyperbolic equilibria. In particu
a bright solitonlike solution is given by the homoclinic orb
associated with an unstable hyperbolic equilibrium point
the map origin.

Apparently, the origin (x,y,u,v)5(0,0,0,0) represents a
equilibrium point of the mapM. To investigate its spectra
stability we need the characteristic polynomial det(DM
2lI )50 associated with the tangent map at the orig
which reads

l42A~l31l!1Bl21150, ~12!
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with

A5
2v

V
, B521

v22h2

V2 2
d2

V2 . ~13!

Since the characteristic polynomial is reflexive it follows th
complex eigenvalues occur generally in quadrupl
(l,l21,l* ,l* 21). If ulu51 then they occur in complex
conjugate pairs, while real eigenvalues come in pairsl,l21

@23,24#. The eigenvalues are computed as

l5
1

2
~r6Au42r2u!, ~14!

with

r5
1

2
~A6AA224B18!. ~15!

The origin ~0,0,0,0! represents an unstable hyperbolic po
if there exist two pairs of real eigenvalues (l1,1/l1) and
(l2,1/l2) with uluÞ1, which is the case if one of the fol
lowing three constraints in parameter space is fulfilled:

A.4, B.6, 2~A21!,B,
A2

4
12, ~16!

A,24, B.6, 22~A11!,B,
A2

4
12, ~17!

B,22, B,22~A11!, B,2~A21!. ~18!

In order to depict the homoclinic tangle of the invaria
manifolds of the hyperbolic point we approximate the sta
and unstable manifolds, respectively, in the vicinity of t
hyperbolic point by the linear subspaces~straight lines in the
direction of the eigenvectors to the eigenvalues with mo
lus unequal one! of the tangent map. After iteration of a few
thousand points on them several times we obtain the
moclinic tangle. In Fig. 1 we plot the projections of the fou
dimensional stable and unstable manifold of the hyperb
equilibrium on thex-u plane, they-v plane, and thex-y
plane. One infers that there exist transversal intersection
the stable and unstable manifolds at isolated points formin
homoclinic orbit$fn

hom%. It has been shown that homoclin
connections can be exploited to construct standing soli
like solutions of lattice chains@12#. To this end we use the
fact that homoclinic points approach the origin asympto
cally along the stable~unstable! manifold for n→` (2`),
respectively. Therefore, the homoclinic orbit$fn

hom% is at-
tributed to a localized state pinned by the lattice. Figure
shows such a stationary solitonlike excitationuCn(t)u2

5ufn
homu2 of the damped, driven lattice. In this manner t

damping term and the driving force conspire to suppor
coherent structure in the form of a bright solitonlike solutio

To investigate the linear stability of a time-periodic loca
ized stateCn

(0)(t)5fn
homexp(ivt) on the basis of the Floque

theory @25# we make the ansatzCn(t)5Cn
(0)(t)1dCn(t)

including a small perturbationdCn(t). The linear tangent
equation fordCn(t) reads
t
s

t
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.

idĊn12@2uCn
~0!u2dCn1~Cn

~0!!2dCn* #

1V@dCn111dCn2122dCn#

52 iddCn1hdCn* exp~ iVt !. ~19!

Decomposing into real and imaginary parts and using t
dCn5an1 ibn , Cn

(0)(t)5fne2 ivt5(xn1 iyn)e2 ivt, andV
22v52kp, we obtain eventually

FIG. 1. Two-dimensional projections of the four-dimension
homoclinic tangle of the hyperbolic point~0,0,0,0!. The parameters
ared50.001,h50.01, v51.5, andV50.1. ~a! Thex-u plane.~b!
The y-v plane.~c! The x-y plane.
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ȧn522$2~xn
21yn

2!bn1@2xnyn sin~2vt !

2~xn
22yn

2!cos~2vt !#bn1@2xnyn cos~2vt !

1~xn
22yn

2!sin~2vt !#an%2V@bn111bn2122bn#2dan

1h@an sin~2vt !2bn cos~2vt !# ~20!

and

ḃn52$2~xn
21yn

2!an2@2xnyn sin~2vt !

2~xn
22yn

2!cos~2vt !#an1@2xnyn cos~2vt !

1~xn
22yn

2!sin~2vt !#bn%1V@an111an2122an#

2dbn2h@an cos~2vt !1bn sin~2vt !#. ~21!

Integrating the tangent equations~20! and ~21! over one pe-
riod T52p/v yields a linear map

S an~T!

bn~T! D5FS an~0!

bn~0! D , ~22!

whereF is the Floquet matrix. Linear stability of the solutio
Cn

(0)(t) requires that the matrixF has no eigenvalues o
modulus larger than one; otherwise the solution will be l
early unstable. We have proved numerically that the Floq
eigenvalues stay on the unit circle ensuring linear stab
for the stationary localized solutions derived from the h
moclinic map orbit.

III. PERIODIC, QUASIPERIODIC, AND CHAOTIC
LOCALIZED SOLUTIONS

A. The single oscillator

In this section we investigate the dynamical properties
a single damped, driven oscillator. For vanishing couplin
V50 results a lattice of uncoupled oscillators, each obey
the equation

i Ḟ12uFu2F5h exp~ iVt !F* 2 idF. ~23!

In order to apply perturbational methods such as the ave
ing procedure we consider the case of weak driving force

FIG. 2. Amplitude profileuCn(t)u2 of the solitonlike solution
derived from the homoclinic orbit of the stationary map. The p
rameters are the same as in Fig. 1.
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small damping, i.e.,h andd are assumed to be small. For th
forthcoming analysis it is useful to perform a phase transf
mation

F~ t !5exp~ ivt !F̃~ t !, ~24!

yielding the modified oscillator equation

iF8 12uF̃u2F̃2vF̃5h exp~ i Ṽt !F̃* 2 idF̃, ~25!

where we usedṼ5V22v. For ease of notation we drop th
tildes again. WritingF5X1 iY and decomposing into rea
and imaginary parts gives

Ẋ5vY22~X21Y2!Y2h@cos~Vt !Y2sin~Vt !X#2dX,
~26!

Ẏ52vX12~X21Y2!X2h@cos~Vt !X1sin~Vt !Y#2dY.
~27!

We are interested in periodic forced responses of the os
lator that can be expected when the system is close
resonance of orderk, i.e., whenV.kv for integer k. To
cast the resonant system into the form appropriate for ap
ing the averaging method@26# we use the invertible van de
Pol transformation

S u
v D5AS X

YD , A5F cos~k21Vt ! 2sin~k21Vt !

2sin~k21Vt ! 2cos~k21Vt !
G ,
~28!

under which the system~26! and ~27! becomes

u̇5~k21V2v!v12~u21v2!v2du

1h$2 cos~k21Vt !sin~k21Vt !@cos~Vt !u2sin~Vt !v#

1@cos2~k21Vt !2sin2~k21Vt !#@sin~Vt !u

1cos~Vt !v#%, ~29!

v̇52~k21V2v!u22~u21v2!u2dv

2h$2 cos~k21Vt !sin~k21Vt !@cos~Vt !v1sin~Vt !u#

2@cos2~k21Vt !2sin2~k21Vt !#@cos~Vt !u

2sin~Vt !v#%, ~30!

with uk21V2vu!1. Sinceu̇ andv̇ are small the functionsu
and v vary slowly and we can approximate the right-ha
sides of Eqs.~29! and ~30! by averaging over one periodT
52p/V. The integration has to be performed individual
for each value ofk. Laterk52 is used, for which we obtain

u̇5~221V2v!v12~u21v2!v2du1
h

5p
u, ~31!

v̇52~221V2v!v22~u21v2!v2du1
h

5p
v. ~32!

Expressing the averaged system in polar coordinateu
5r cosf andv5r sinf gives

-



d

n
te

-
ab
r-
e
f t
th
d
g
n
ly
ns
at
i-

u
ve
ng

is
u-
te
I
in

tri

un-
or
zero

tral
-

e
the

ns
ing

ics
ctor

In
ation
ly

ns
ed
rs

sta-

at-
ke
ap
a

ce

PRE 59 1641PERIODIC, QUASIPERIODIC, AND CHAOTIC . . .
ṙ 5@2d1ĥ cos 2f#r , ~33!

ḟ52~V̂12r 21ĥ sin 2f!, ~34!

where we used the notationsV̂5221V2v and ĥ5h/5p.
The transformation~28! relates the original functionsX,Y
with u,v and r ,f, respectively, via

x~ t !5cos~k21Vt !u~ t !2sin~k21Vt !v~ t !

5r ~ t !cos@k21Vt1f~ t !#,

y~ t !52@sin~k21Vt !u~ t !1cos~k21Vt !v~ t !#

52r ~ t !sin@k21Vt1f~ t !#,

showing that equilibria of the averaged system correspon
almost sinusoidal solutions of the original equations.

Nontrivial fixed pointsr̄ ,f̄ are located at

r̄ 5A2
1

2 F V̂6ĥA12S d

ĥ
D 2G , ~35!

f̄5
1

2
cos21S d

ĥ
D . ~36!

We obtain the stability properties of the fixed points by co
sidering the eigenvalues of the linearized averaged sys
which are given by

l52d6$24ĥ215d274V̂Aĥ22d2%21/2. ~37!

The analytical expression~37! is used for identifying param
eter constellations for which the averaged system has st
fixed points (Rel,0), the locations of which are then dete
mined by Eqs.~35! and ~36!. These stable equilibria of th
averaged system provide then stable oscillatory modes o
original equations of the single oscillator. The results of
investigation of the single oscillator~regarded as uncouple
from the lattice forV50) are the basis for the forthcomin
studies of the DNLS lattice of weakly coupled, damped, a
driven oscillators. In particular the situation for which on
one lattice oscillator performs stable oscillatory motio
whereas all the others are unexcited and the interoscill
coupling strengthV is small complies with single-site exc
tation of the anti-integrable limit@25#.

B. Stationary localized solutions and bifurcation
to quasiperiodic breathers

In this section we describe the dynamics of the vario
types of localized states appearing for the damped, dri
DNLS lattice. In our approach we start from the anticoupli
limit arising for vanishing couplingsV50 and use one-site
excitations for which all but one oscillator is at rest. Th
provides trivial spatially localized solutions. For small co
plings we expect that this trivial localized single-site sta
persists as an exponentially localized lattice excitation.
@27# a similar approach has been used to excite breathers
chain of nonlinear oscillators subject to periodic parame
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driving. Therefore, we take parameters such that an
coupled oscillator operates in the regime of bistability f
which besides the stable zero solution a second non
stable oscillatory mode exists~see Sec. III A!. In order to
generate localized lattice states we excite only the cen
oscillator atn5250 initially while the rest of the lattice os
cillators are held at rest~local stable zero solution!. Concern-
ing the initial conditions of the excited central oscillator, w
remark that they do not necessarily have to coincide with
exact position of the attractor~the sink! on the Poincare´ map
of a single uncoupled oscillator. Rather the initial conditio
can be taken at any location contained in the correspond
basin of attraction. In fact, after a transient the dynam
reaches a steady state. This relaxation onto an attra
makes the excitation of localized states in a damped~and
driven! lattice system easier than in Hamiltonian lattices.
the latter case a numerical scheme based on the continu
from the no-coupling limit is used, requiring comparative
more effort for the computation of breathers@28# than for
damped lattices, where it suffices to use initial conditio
lying in the domain of the basis of attraction. We integrat
numerically the lattice system consisting of 500 oscillato
imposing periodic boundary conditions. Figure 3~a! depicts
the excitation pattern for a coupling strength ofV50.1,
where we omitted a transient ofT5500. One clearly recog-
nizes a coherent stable spatial structure in the form of a
tionary state exponentially localized around the siten
5250. A comparison of the localized steady amplitude p
tern of Fig. 3 with the one of the corresponding solitonli
state gained from the homoclinic orbit of the stationary m
analysis~see Sec. II! reveals their coincidence. Hence, after
transient period the initial single site excitation of the latti

FIG. 3. Excitation pattern of the damped, driven lattice.~a!
Steady localized amplitude profile. The parameters ared50.01, v
51, V52, V50.1, andh50.35. ~b! Breathing localized amplitude
profile. The parameters are the same as in~a!, except for the in-
creased driving force amplitudeh50.38.
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1642 PRE 59DIRK HENNIG
merges dynamically into a stationary solitonlike solutio
The pattern of the latter involves besides the large amplit
of the central oscillator also the smaller amplitudes of
next two lattice oscillators on either side of it while the re
of the vanishingly small lattice amplitudes form the exp
nential tail of the localized state. In this sense the station
solitonlike solution acts as a global attractor for the dynam
for a single-site excitation of the damped, driven DNLS l
tice.

For further dynamical studies we keep the parametersv,
V, V, and d fixed and vary the amplitude of the drivin
force. The steady solitonlike state persists up to a driv
force strength ofh,0.38. Increasing the amplitude of th
driving force toh50.38 causes temporal oscillations of th
excitation pattern maintaining its localized structure. Figu
3~b! shows the breathing localized amplitude pattern.

Due to the spatial coherence the lattice dynamics can
characterized by a local picture of a single oscillator taken
be the central one at lattice siten5250. A reduction of the
lattice dynamics is achieved by the two-dimensional ret
map. To this end the time series of the central site amplit
is observed stroboscopically at the period of the driv
force. We obtain then a set of discrete datauC250(NT)u2,
N51,2, . . . , anduC250„(N11)T…u2 is plotted as a function
of uC250(NT)u2 in Fig. 4.

FIG. 4. First return mapuC250@(N11)T#u22uC250(NT)u2 with
periodT52p/V. ~a! The parameters are the same as in Fig. 3~a!,
yielding the fixed point at~1.34, 1.34!, respectively, as in Fig. 3~b!,
giving the filled circular orbit around the fixed point.~b! The pa-
rameters are the same as in~a!, except for the enlarged amplitud
h50.393 35, resulting in a set of discrete points associated w
periodic motion.
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In the case of the stationary localized state shown in F
3~a! for which the amplitudesuC250(NT)u2 remain constant
~likewise, the amplitudes of all the other oscillators ap
from n5250) the return map shows only one fixed point.
the case of the breathing localized pattern of Fig. 3~b! the
uC250„(N11)T…u22uC250(NT)u2 plot yields a closed circu-
lar orbit around the fixed point. Since the trajectory dens
covers the circular loop, quasiperiodic motion is indicated.
fact, the corresponding power spectrum of the time evolut
of the central amplitude shows the presence of two inco
mensurate frequencies confirming the quasiperiodicity of
dynamics~not shown for this case but see also further b
low!.

We conclude that at a driving amplitudeh50.38 a Hopf
bifurcation takes place. As a result, the trajectory of the
turn map of each lattice oscillator changes from a fixed po
to motion on a limit cycle. The dynamical amplitude profi
of the lattice oscillators performs then a transition from
stationary localized state to aquasiperiodic breather.

Qualitatively equal pictures can be obtained for the lo
return maps of all the other oscillators. However, we c
deduce from the local properties of a single two-dimensio
return map the global properties of the lattice of coup
oscillators with the use of phase correlation functions. W
pass to polar coordinatesCn5r n exp(iun) and define a phase
correlation function at a fixed instant of time as

C~m!5^um11um&5
1

N2m (
n51

N2m

unun1m , 1<m<N21,

~38!

which enables us to distinguish between periodic and qu
periodic lattice states. For mutually periodically oscillatin
lattice oscillators their phases are correlated and all corr
tion functionsC(m) remain constant, while for quasiperiod
breathers due to the loss of phase coherences the correl
functions decay.

For h50.393 35 the breathing of the amplitudes is pe
odic, as is indicated by the set of discrete points on the c
responding return map of Fig. 4~b!. The excitation pattern of
the frequency locked lattice oscillations is governed by
periodic breather.

C. Torus destruction, spatiotemporal chaos, and collapse
to localized multisite states

When the driving force amplitude is further increased
observe a dynamical bifurcation, that is, the character of m
tion changes in the course of time. For an appropriate ill
tration of the rich dynamical features we plot in Fig. 5 th
time evolution of the central site amplitude. A first time in
terval is characterized by regular~quasiperiodic! motion fol-
lowed by a chaotic transient, which finally ends up in
steady state of constant amplitude. Concerning the dynam
of the lattice excitation, we depict in Fig. 6 the amplitud
profiles of the lattice for three time intervals belonging to t
qualitatively different scenarios of Fig. 5. We note that in
initial time interval the localized excitation pattern persists
a quasiperiodic breather on the lattice corresponding
stable torus motion@Fig. 6~a!#. However, att>2000 this
torus is destroyed and the motion becomes unstable. A
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consequence, the lattice dynamics exhibits spatiotemp
chaos. Remarkably, the chaotic dynamics is spatially c
fined to a few (,10) lattice sites, whereas the rest of t
lattice remains unexcited@Fig. 6~b!#. Thus we call this local-
ized structure achaotic breather. The transition from a qua
siperiodic lattice motion to chaotic dynamics is reflected
the power spectra attributed to the trajectory of the cen
oscillator. Figures 7~a! and 7~b! display the power spectra o
uC250(t)u2 for the time intervals 500<t<1524 and 2500<t
<3024, respectively. The former power spectrum sho
peaks at incommensurate frequencies typical of quasip
odic motion, while for the last one we note the broadba
character associated with chaotic time evolution. Finally
t'5500 the chaotic interlude stops and the dynamics rela
to a lasting steady state@Fig. 6~c!#. Contrary to the exponen
tial localization around a single site in the beginning, t
final localized steady amplitude profile of the lattice involv
now six sites of almost equal amplitudes. Linear stability
the final multisite stationary localized state is proved with
help of Floquet analysis~see Sec. II!. Note that the quasip
eriodic phase and the duration of the chaotic breather
fairly long, meaning that both exist for more than 600 pe
ods of the driving force.

Finally, above a driving amplitude ofh50.409 the lattice
dynamics runs initially through a regime of localized sp
tiotemporal chaos. Fort>2500 the excitation pattern even
tually decays to a stable state of vanishing amplitudes,
all lattice oscillators approach their local zero attractor,
illustrated in Fig. 8 forh50.4095.

IV. SUMMARY AND CONCLUSIONS

We studied the dynamical properties of a damped, pa
metrically driven DNLS with focus on the existence and s
bility of localized solution. In the first part of the paper w
established the existence and stability of a static soliton
lattice state of the damped and parametrically driven DN
lattice. Such a stationary localized state exists if the ene
loss due to dissipation is balanced by a proper energy in
tion through the driving force. In order to construct the l
calized solution we exploited a nonlinear map approach.
identified parameter ranges for which the origin of the fo

FIG. 5. Time evolution of the amplitude of the central oscillato
The parameters are the same as in Fig. 3, except for the incre
amplitudeh50.408.
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dimensional map represents a hyperbolic equilibrium. Its
sociated homoclinic orbit supports a stationary solitonl
solution on the lattice, the linear stability of which is prove
by a Floquet analysis.

The second part of the paper was devoted to the dyna
cal properties of localized lattice excitations. We demo
strated that, dependent upon the amplitude of the driv
force, static bifurcations take place so that the characte
the localized lattice states changes from static to tim
oscillating solutions. These oscillations can be of either
riodic or quasiperiodic nature. Furthermore, we detected
namical bifurcations for which regular quasiperiodic moti
is destabilized in the course of time and a transient of s
tiotemporal chaos appears, forming a localized chaotic
breathing lattice state. After this chaotic interlude follows
relaxation of the lattice oscillators to a stable localized m
tisite amplitude pattern.

The temporal destabilization of the quasiperiodic moti

sed

FIG. 6. Excitation pattern of the damped, driven lattice for d
ferent time intervals showing the dynamical bifurcations from
quasiperiodic breather via a chaotic breather to a stable steady
tisite localized state.~a! The quasiperiodic breather.~b! The chaotic
breather.~c! The steady multisite localized state.
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accompanied by the destruction of the corresponding toru
phase space reported in this paper has to be compared
previous results on torus destruction. In@29# a cascade of
torus doubling was identified as the destabilization mec
nism of localized structures in continuous media modeled
a quintic complex Ginzburg-Landau equation. In direc
driven sine-Gordon and NLS equations the scenarios of
riod doublings and the quasiperiodic route to chaos w
observed@30–34#. All these static bifurcation scenarios ste
from the variation of a parameter of the underlying equ
tions. Additionally, in our case a dynamical bifurcation al
occurs for which destabilization appears after a transient
riod of regular evolution at fixed parameters.

At this stage it is suitable to compare directly our resu
of the investigation of the damped, driven DNLS equati
with those for its continuum counterpart, namely, t
damped, driven NLS equation explored in@2,8#. To mention
the properties that the continuum and the lattice equa

FIG. 7. Power spectrum of the amplitudeuC250(t)u2 of Fig. 5 for
~a! 500<t<1524 belonging to the regular quasiperiodic regim
shown in Fig. 5 and~b! 2500<t<3024 when the trajectory is cha
otic.
ys
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e-
e

-

e-

s

n

share we note that for both of them stationary soliton so
tions have been found. Furthermore, when increasing
driver amplitude these stationary solitons undergo bifur
tions to periodic and quasiperiodic breatherlike localized
citations. Finally, above a certain driver amplitude t
breathing solitons become unstable and spatiotemporal c
sets in. For the NLS equation the transition to chaos occ
via the route of a period doubling or a quasiperiodic scena
@8#. In the case of the DNLS we did not observe such
transition to chaos. As mentioned earlier, the order-ch
transition is the outcome of a dynamical destabilization p
cess for which quasiperiodic motion develops into chaos
the course of time. Thus we call this transition adynamical
quasiperiodic route. Contrary to the strong spatial confine
ment of the chaos in our present study of the damped, dri
DNLS lattice, the chaos in the case of the NLS equation
extended all over the spatial dimension of the on
dimensional structure. Apparently, the localization of cha
for the DNLS equation is a pinning effect due to the latti
discreteness supporting a low-dimensional attractor fo
spatially extended system. As far as the DNLS equation
concerned, the chaotic breather serves as the source fo
creation of a localized multisite state. This temporal tran
tion from an initial coherent structure~the single-pulse soli-
ton! via an interlude of chaos to a final stable coherent str
ture of spatially extended excitation peak is a different effe
Finally, above a critical amplitude of the parametric drivin
force the solitonlike excitation fades away and leaves
lattice oscillators at their stable zero rest positions~zero at-
tractor!. This happens for both the continuum NLS equati
@8# and its discrete DNLS counterpart.
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FIG. 8. Amplitude profile of the damped, driven lattice demo
strating the decay of a chaotic breather to zero lattice amplitu
The parameters are the same as in Fig. 3, except forh50.4095.
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